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Abstract
We calculate the one-particle spectral function and the corresponding derived
quantities for a chain lattice with a one-dimensional conducting electron band,
and with a three-dimensional long-range Coulomb electron–electron interaction
treated within the G0W0 approximation. It is shown that due to the anisotropic
acoustic dispersion of the plasmon mode, the quasi-particle peak as a standard
Fermi liquid feature does not show up in the spectral function. Instead, the latter
comprises only a broad maximum with width of the order of plasmon energy.
Such spectral properties are in the qualitative agreement with ARPES spectra
of Bechgaard salts obtained in recent measurements. The present approach
is appropriate for the treatment of wide energy scales defined by the width of
the conducting band and the plasmon energy, and is complementary to earlier
rigorous results obtained within the Luttinger liquid approach in the asymptotic
limit of low energies close to the chemical potential.

1. Introduction

Spectral properties of the quasi-one-dimensional conductors in the metallic state are in many
respects different from those of standard three-dimensional metals. The latter are theoretically
covered by the Landau theory of Fermi Liquids, usually extended by the random phase
approximation (RPA) treatment of the long-range electron–electron Coulomb interaction. The
central prediction of this theory is the appearance of quasi-particle peaks in the spectral function
at energies close to the chemical potential and wavevectors close to the Fermi wavevector [1].
Furthermore, due to these peaks the momentum distribution function shows a discontinuity at
the Fermi wavevector [2, 3].

The Fermi liquid approach is however inadequate for the treatment of the anomalous
behaviour of particle–hole and/or particle–particle correlations in the quasi-one-dimensional
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conductors belonging to the class of Luttinger liquids. This is shown within various non-
perturbational approaches, particularly those using the renormalization group and bosonization
techniques. Calculations of one-particle propagator within these approaches show that the
energy dependence of the density of states close to the chemical potential is given by the
power law N(ω) ∼ |ω|α, where α is the interaction-dependent anomalous dimension [4].
The frequency dependence of the corresponding one-particle spectral function at the Fermi
wavenumber obtained for the spinfull spin-rotation-invariant Luttinger model is A(kF, ω) ∼
|ω|α−1, showing that the spectral weight moves away from the Fermi energy as α exceeds
unity [4]. The corresponding momentum distribution function is continuous at the Fermi
wavenumber.

The ARPES spectra of the Bechgaard salts (TMTSF)2X PF6 where TMTSF stands for
tetramethyltetraselenafulvalene and X = PF6, AsF6, ClO4, . . . [5–7] show a broad maximum at
energies of the order of the plasmon collective mode and a disappearance of the spectral weight
at the chemical potential. This seems to be in qualitative agreement with the Luttinger liquid
picture, although there are some indications, for example the insensitivity of the almost linear
tail disappearing at the chemical potential on the wavevector, that the main properties of the
spectra could originate from surface effects [8]. As for the interpretation within the Luttinger
liquid approach, it is consistent provided the value of α for investigated salts is larger than unity.
Such a regime of values for α is realized in systems with strong enough long-range Coulomb
interaction (including electron–electron interaction between neighbouring sites) [9–12], and is
to be contrasted with the regime α � 1/8 characterizing Luttinger liquids with a dominant
on-site Hubbard interaction.

The above estimation of the value of the anomalous dimension places the value of the
‘charge stiffness constant’ Kρ , connected with α through the relation α = (Kρ + K −1

ρ − 2)/4,
in the range Kρ < 0.17, which agrees with some, but not all, other independent measurements.
For example, the temperature dependence of the spin–lattice relaxation rate T −1

1 has exponent
Kρ ≈ 0.1 [13, 14], which implies α ≈ 2, consistent with photoemission experiments, while, on
the other hand, optical conductivity and resistivity measurements suggest much larger values
of Kρ , namely 0.23 [7, 15, 16] and 0.25 [17, 18] respectively.

The spectral properties at energies of the order of the plasmon and/or bandwidth
energy become particularly interesting due to the already mentioned unusual experimental
photoemission data, although, again, the corresponding large energy ranges of 1 eV can be
affected by surface contributions as well. From the microscopic point of view this energy range
is out of the scope of methods used in the treatments of Luttinger liquids which are limited to
the low-energy regime. In the present paper we investigate this range by applying the standard
so-called G0W0 approximation in the calculation of the dressed electron Green’s function.
More precisely, we analyse the spectral properties of the quasi-one-dimensional metal with
a rectangular lattice of parallel chains, paying particular attention to the long-range Coulomb
interaction, which, as indicated above, plays a crucial role in the photoemission properties
of Bechgaard salts. More specifically, we take into account the three-dimensional Coulomb
interaction between conducting electrons, and assume a strictly one-dimensional electron band
due to a finite transfer integral along the chains. The extension to the more realistic case of
electron bands with a finite transverse dispersion is preliminary considered in [19]. The full
discussion will be given elsewhere [20].

The present approximation for the electron Green’s function was used previously by Hedin
and Lundqvist in the calculation of the spectral function for the three-dimensional ‘jellium’
model [21–23]. It was found that the spectral density is mainly determined by the plasmon
mode. More precisely, A(kF, ω) has a finite weight in the energy range of the order of the long-
wavelength plasmon energy �pl, and the quasi-particle peak with a reduced spectral weight in
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the energy range µ − �pl < ω < µ + �pl. In other words, the plasmon mode causes a transfer
of a significant part of the quasi-particle peak weight into the plasmon energy ranges above and
below the Fermi energy. Still, the quasi-particle exists, in agreement with the expectation that
the Landau theory of Fermi Liquids applies to the three-dimensional ‘jellium’.

It is worthwhile warning here that the G0W0 approximation generally does not lead to a
fully self-consistent result regarding the position of the chemical potential in the homogeneous
electron gas [24], and particularly in inhomogeneous systems [25]. This problem is usually
addressed by introducing a shift of the chemical potential entering through the self-energy
already in the bare Green’s function, in a way that it self-consistently coincides with the position
of the chemical potential in the final dressed Green’s function [25, 26]. We shall adopt this
procedure accordingly in the present treatment.

The particular property of the plasmon mode in our case of strictly one-dimensional
electron band is its anisotropic acoustic dispersion in the long-wavelength limit. Since the
collective plasmon excitations now cover the whole range of energies, including that of the
quasi-particle excitations in the three-dimensional ‘jellium’, the question arises whether the
quasi-particle will appear at all in the spectral density. The present calculations will show
that, provided that there is no transverse interchain hopping of electrons, the spectral density is
indeed dominated by a broad feature with width of the order of the plasmon energy.

In section 2 we develop the G0W0 method for the calculation of the electron self-energy
due to the RPA screened Coulomb interaction, and compare the obtained real and imaginary
part of reciprocal Green’s function with the corresponding results of the three-dimensional
isotropic ‘jellium’. In sections 3 and 4 we analyse the obtained one-particle spectral function,
as well as the other quantities derived from it like the density of states and the momentum
distribution function, and show that the obtained spectral properties are in a qualitative
agreement with the ARPES spectra of the Bechgaard salts. Section 5 summarizes the main
results.

2. Green’s function

2.1. Dyson equation

We start with the G0W0 approximation for the electron self-energy, with the RPA screened
Coulomb interaction playing the role of effective potential. The Dyson equation for the one-
particle Green’s function in the (r, ω)-space is given by

G(r, r′, ω) = G0(r, r′, ω) + i

2π

∫
G0(r, r1, ω)G0s(r1, r′

1, ω
′)

× V (r1, r′
1)e

iω′δG(r′
1, r′, ω) dr1 dr′

1 dω′ + i

2π

∫
G0(r, r1, ω)G0s(r1, r′

1, ω
′)

× [V̄ (r1, r′
1, ω − ω′) − V (r1, r′

1)]G(r′
1, r′, ω) dr1 dr′

1 dω′ (1)

where V (r1, r′
1) and V̄ (r1, r′

1, ω
′) are the bare interaction and the RPA screened interaction

respectively. In equation (1) we separate the exchange contribution from the contribution
comprising only the sum of the RPA bubble diagrams without the bare Coulomb interaction,
given by second term and third term, respectively. Since the fermion line in the time-dependent
version of the exchange contribution begins and ends at the same time, i.e. the corresponding
time difference is infinitesimally small, the exchange term in the frequency representation of
equation (1) carries the phase factor eiω′δ, δ → 0+ (see e.g. [1, 27, 28]). This is not the case
with the diagrams from the third term in equation (1) in which the time difference between
end points of the fermion line is finite. Having in mind the remarks from section 1 on the
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inconsistency of the G0W0 approximation regarding the non-conservation of the fermions,
we follow the procedure proposed by Hedin [26] and elaborated by Schindlmayr [25], and
introduce in equation (1) the bare Green’s function G0s with a shifted chemical potential,

G0s(k‖, ω) = 1 − n(k‖)
ω − E0(k‖) − µ + iη

+ n(k‖)
ω − E0(k‖) − µ − iη

. (2)

The shift µ with respect to the chemical potential of the Green’s function for the non-interacting
fermions G0(k‖, ω) (chosen conventionally to be zero, as is seen below from equations (4), (9))
will be determined self-consistently from the requirement that it coincides with the chemical
potential of the dressed Green’s function G(k‖, ω).

In the (q, ω)-space the Dyson equation reads

G−1(k, ω) = G−1
0 (k‖, ω) − i

2π N

∑
q

{∫
dω′ G0s(q‖, ω′)V (k − q)eiω′δ

+
∫

dω′ G0s(q‖, ω′)[V̄ (k − q, ω − ω′) − V (k − q)]
}
, (3)

with the exchange contribution separated from the rest of the self-energy like in equation (1).
Since it is assumed that the electrons propagate only along chains, the electron dispersion
depends only on the longitudinal component of the wavevector k‖. More specifically, the tight-
binding single-particle energy spectrum is given by

E0(k‖) = −2t0(cos k‖b − cos kFb), (4)

where t0 is the hopping integral, b is the longitudinal lattice constant, kF is the Fermi
wavenumber, and energy is measured from the Fermi energy.

2.2. Screened interaction

The RPA expression for the screened Coulomb interaction in equation (3) is given by

V̄ (q, ω) = V (q)

εm(q, ω)
, (5)

where

V (q) = 4πe2

v0q2
(6)

is the bare Coulomb interaction with v0 being the volume of the elementary cell, and

εm(q, ω) = 1 − V (q)	(q, ω) (7)

is the corresponding dielectric function. Due to the one-dimensional dispersion (4), the RPA
polarization diagram entering into εm(q, ω) also depends only on the longitudinal wavenumber,

	(q, ω) = 	(q‖, ω) = 4

Nb

π
b∑

k‖=− π
b

[1 − n(k‖ + q‖)]n(k‖)[E0(k‖ + q‖) − E0(k‖)]
(ω + iη sgn ω)2 − [E0(k‖ + q‖) − E0(k‖)]2

. (8)

Here Nb is the number of the elementary cells along the chains, and

n(k‖) =
{

1 for E0(k‖) < 0

0 for E0(k‖) > 0
(9)

is the occupation function at zero temperature.
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Figure 1. Incoherent and coherent electron–hole excitations for parameters kF = π/2b, t0 =
0.2 eV, ωpl = 2 eV, q⊥ = 1

10b . (a) Incoherent electron–hole range as follows from the polarization
diagram (8), (b) the acoustic dispersion line (∼vFq‖) of its upper part in the long-wavelength limit,
(c) the plasmon frequency given by equation (16), and (d) the approximate plasmon dispersion (15).

It is useful for further considerations to look for zeros of the microscopic dielectric
function (7) since they determine the energies of electron–hole excitations, dressed due to
the Coulomb scattering. In order to distinguish between incoherent dressed electron–hole
excitations and collective plasmon ones, we keep the Born–von Karman discreteness of the
wavenumbers k‖, q‖ in equations (6)–(8),

ki = ni
2π

L
, ni ∈ Z , (10)

where L is a macroscopic length of the sample in the chain direction. Incoherent excitations are
those for which the excitation energies �(k‖, q) are microscopically, of the order of L−1, close
to the energies of the corresponding bare electron–hole excitations with the same wavenumbers,

E0(k‖ + q‖) − E0(k‖) = 4t0 sin
2k‖ + q‖

2
b sin

q‖b

2
. (11)

The energies of incoherent excitations can be determined only in the discrete
representation (10) [29], and are represented in figure 1 by a dense set of zeros of εm(q, ω)

which alternate with its poles at bare electron–hole energies (11).
Collective plasmon excitations have excitation energies which are macroscopically, i.e. of

the order L0, far from the edge of the bare electron–hole quasi-continuum shown in figure 1,
and therefore can be followed equally well within the continuous approach. Since the plasmon
mode will have a central role in the analysis of the electron spectral function, it is useful to
simplify its dispersion relation, still keeping all relevant ingredients of the dielectric function,
and so enable an analytical treatment of the Dyson equation (3). In the long-wavelength limit
q → 0 the k‖-summation in equation (8) reduces to the narrow range kF − q‖ < k‖ < kF, and
the energy of electron–hole excitations (11) is given by

E0(k‖ + q‖) − E0(k‖) ≈ vFq‖, (12)

where vF = 2t0b sin kFb is the Fermi velocity. The polarization diagram and the dielectric
function then reduce to

	(q‖, ω) ≈ 4

Nb

vFq2
‖

ω2 − v2
Fq2

‖

L

2π
(13)
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and

εm(q, ω) = (ω + iη sgn ω)2 − �2(q)

(ω + iη sgn ω)2 − v2
Fq2

‖
(14)

respectively. Here

�2(q) = |q‖|2v2
F + ω2

pl|q‖|2
q2

, ω2
pl ≡ 8e2vF

ac
(15)

is the dispersion of the collective plasmon mode, with a and c being two perpendicular lattice
constants. As is seen from figure 1, the dispersion curve �(q), which is not far from the
exact one calculated numerically [30], is much higher than the maximum electron–hole quasi-
continuum, even when its value in the long-wavelength regime (vFq‖ → 0) is extended along
the whole first Brillouin zone. For the same reason we can skip the first term in the above
expression for �2(q) and use in further calculations the simplified dispersion

�(q) ≈ ωpl
|q‖|
q

(16)

in the whole first Brillouin zone.

2.3. Green’s function

We continue by calculating the reciprocal Green’s function G−1(k‖, ω). After performing the
ω′-integration it reads

G−1(k‖, ω) = ω − E0(k‖) + iη[1 − 2n(k‖)] − Eex(k‖) − 1

2N

∑
q

V (q)
�2(q) − v2

Fq2
‖

�(q)

×
[

1 − n(k‖ + q‖)
ω − µ − �(q) − E0(k‖ + q‖) + iη

+ n(k‖ + q‖)
ω − µ + �(q) − E0(k‖ + q‖) − iη

]
, (17)

where

Eex(k‖) = − 1

N

∑
q

V (q)n(k‖ + q‖) (18)

is the exchange energy per elementary cell for the one-particle state with wavenumber k‖ [31].
Since �(q) 	 vFq‖, the factor [�2(q)−v2

Fq2
‖ ]/�(q) in equation (17) can be reduced to �(q).

Furthermore, provided that t0 
 ωpl the denominators in the [· · ·]-brackets can be simplified
by neglecting the q‖-dependence in the band dispersions E0(k‖ + q‖). The latter step can be
justified by noticing that the dependence of E0(k‖ + q‖) on q‖ in the denominators is important

only for large values of the transverse component q⊥ ≡
√

q2 − q2
‖ . However, the q-summation

in this range gives a negligible contribution to G−1(k‖, ω) due to the smallness of the factor
V (q)�(q). Note also that the ratio ωpl/t0 is a measure of the Coulomb interaction strength
with respect to the band kinetic energy, and is given by

ω2
pl

t2
0

= 64b2 sin kFb

πac
rs, (19)

where b and a, c are longitudinal and transverse lattice constants respectively, and rs = r0/a0 =
π/(2kFa0) is the longitudinal length per conducing electron normalized by the Bohr radius a0.
Later on we shall discuss the obtained results by choosing for convenience the ratio ωpl/t0
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in the range 3–4 in order to keep consistency with the above approximations which enable an
analytical calculation of G−1(k‖, ω). Although such choice situates the values of rs in the range
2–4, i.e. above the strictly perturbational range, these intermediate values of rs are still small
enough with respect to the range of charge localization of Mott type, which indeed does not
take place in (TMTSF)2X salts.

After the above simplifications, the expression (17) reduces to

G−1(k‖, ω) = ω − E0(k‖) + iη[1 − 2n(k‖)] − Eex(k‖) − 1

2N

∑
q

V (q)�(q)

×
[

1 − n(k‖ + q‖)
ω − µ − �(q) − E0(k‖) + iη

+ n(k‖ + q‖)
ω − µ + �(q) − E0(k‖) − iη

]
. (20)

The chemical potential now follows immediately from the defining condition

Re G−1(kF, µ) = 0. (21)

Taking into account the result (18), we get

µ = − 1

2N

∑
q

V (q). (22)

The remaining q-integration in equation (20) can be fully performed after approximating
the rectilinear first Brillouin zone with the cylinder of the same volume, i.e. that having height
2π/b and circular base of radius Q⊥ = 2

√
π/(ac), where a and c are the transverse lattice

constants. After changing to cylindrical coordinates, and taking into account that Q⊥ 
 π/b,
we get the final expressions for the real and imaginary parts of G−1(k‖, ω). In the range of
frequencies |ω − µ − E0(k‖)| < ωpl they read

Re G−1(k‖, ω) = ω − µ − E0(k‖)

− e2

2π

{
b

π

Q2
⊥[ω − µ − E0(k‖)]

ωpl − ω + µ + E0(k‖)
+ Q⊥[ω − µ − E0(k‖)]√

ω2
pl − [ω − µ − E0(k‖)]2

× ln

∣∣∣∣∣
ωpl −

√
ω2

pl − [ω − µ − E0(k‖)]2

ωpl +
√

ω2
pl − [ω − µ − E0(k‖)]2

∣∣∣∣∣+ [F1(kF − |k‖|, ω − µ)

+ F1(kF + |k‖|, ω − µ)]

(

π

b
− |k‖| − kF

)
+
[

F1(kF − |k‖|, ω − µ)

+ 2F1

(
π

b
, ω − µ

)
− F1

(
2π

b
− kF − |k‖|, ω − µ

)]



(
kF + |k‖| − π

b

)}
,

(23)

where

F1(x, y) = 2x ln |x | − x ln

∣∣∣∣x2 − Q2
⊥(y − E0(k‖))2

ω2
pl − (y − E0(k‖))2

∣∣∣∣

− Q⊥(y − E0(k‖))√
ω2

pl − (y − E0(k‖))2
ln

∣∣∣∣∣
x + Q⊥(y−E0(k‖))√

ω2
pl−(y−E0(k‖))2

x − Q⊥(y−E0(k‖))√
ω2

pl−(y−E0(k‖))2

∣∣∣∣∣. (24)

The chemical potential and the exchange energy in the expression (23) are given by

µ = − e2

2b

{
2bQ⊥

π
arctan

π

bQ⊥
+ ln

[(
bQ⊥
π

)2

+ 1

]}
≈ −

(
1

2
e2 Q⊥ + e2

2π2
Q2

⊥b

)
(25)
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and

Eex(k‖) = − e2

2π

{[
F(kF − |k‖|) + F(kF + |k‖|)

]



(
π

b
− |k‖| − kF

)

+
[

F(kF − |k‖|) + 2F

(
π

b

)
− F

(
2π

b
− kF − |k‖|

)]



(
kF + |k‖| − π

b

)}

(26)

respectively, where

F(x) ≡ x ln(Q2
⊥ + x2) + 2Q⊥ arctan

x

Q⊥
− x ln x2. (27)

The result for the imaginary part of the reciprocal Green’s function in the range of frequencies
|ω − µ − E0(k‖)| < ωpl is given by

Im G−1(k‖, ω) = e2

2

{
2qc
[ωpl − ω + µ + E0(k‖)]
[ω − µ − E0(k‖)]

− [
[ωpl + ω − µ − E0(k‖)]
[−ω + µ + E0(k‖)]
+ 
[ωpl − ω + µ + E0(k‖)]
[ω − µ − E0(k‖)]]
×
[

2qc
(kF − |k‖| − qc) + 2kF
(qc − |k‖| − kF) + (kF − |k‖| + qc)

× 
(|k‖| + qc − kF)
(kF − ||k‖| − qc|)

(

2π

b
− kF − |k‖| − qc

)

+
(

2kF + 2qc − 2π

b

)

(kF − ||k‖| − qc|)


(
−2π

b
+ kF + |k‖| + qc

)]}
,

(28)

with

qc ≡ min

( |ω − µ − E0(k‖)|Q⊥√
ω2

pl − (ω − µ − E0(k‖))2
,
π

b

)
. (29)

In the regime |ω − µ − E0(k‖)| > ωpl, we have

Im G−1(k‖, ω) = 0 (30)

and

Re G−1(k‖, ω) = ω − µ − E0(k‖)

− e2

2π

{
−F2(ω − µ − E0(k‖)) − b

π

Q2
⊥(ω − µ − E0(k‖))

ωpl − ω + µ + E0(k‖)

+ [F3(kF − |k‖|, ω − µ) + F3(kF + |k‖|, ω − µ)]

(

π

b
− |k‖| − kF

)

+
[

F3(kF − |k‖|, ω − µ) + 2F3

(
π

b
, ω − µ

)
−F3

(
2π

b
− kF − |k‖|, ω − µ

)]

× 


(
kF + |k‖| − π

b

)}
(31)

with the same expressions for the chemical potential and exchange energy, while the functions
F2(x) and F3(x, ω) are given by
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F2(x) =




4x Q⊥√
x2 − ω2

pl

[
arctan

(√
x + ωpl

x − ωpl

1
π

bQ⊥ +
√

1 + ( π
bQ⊥ )2

)
− arctan

√
x + ωpl

x − ωpl

]
,

x > ωpl,

4x Q⊥√
x2 − ω2

pl

[
arctan

(√
|x | + ωpl

|x | − ωpl

(
π

bQ⊥
+
√

1 +
(

π

bQ⊥

)2
))

− arctan

√
|x | + ωpl

|x | − ωpl

]
, x < −ωpl,

(32)

and

F3(x, y) = 2x ln |x | − x ln

∣∣∣∣x2 − Q2
⊥(y − E0(k‖))2

ω2
pl − (y − E0(k‖))2

∣∣∣∣

− 2Q⊥(y − E0(k‖))√
(y − E0(k‖))2 − ω2

pl

arctan

(
x
√

(y − E0(k‖))2 − ω2
pl

Q⊥(y − E0(k‖))

)
, (33)

respectively.
Let us look more closely into the functions Im G−1(k‖, ω) and Re G−1(k‖, ω) in the range

of negative values of ω − µ, relevant for the photoemission spectra. Im G−1(k‖, ω) is shown
in figure 2. It is seen that Im G−1(k‖, ω) → −e2kF for ω → µ + E0(k‖) − ωpl + 0 and
Im G−1(k‖, ω) = 0 for ω < µ + E0(k‖) − ωpl. On the other hand, Im G−1(k‖, ω) vanishes for
k‖ < kF and ω > µ+E0(k‖), as well as for k‖ > kF and µ > ω > µ−�(k‖−kF, Q⊥)+E0(k‖).
The vanishing of Im G−1(k‖, ω) in the former range, i.e. in the occupied part of the Brillouin
zone, can be traced already from the initial equation (20). Namely, for ω > µ + E0(k‖)
there are no poles of the bare Green’s function with a finite real part, and the poles at
ω = µ − �(q) + E0(k‖) + iη contribute to Im G−1(k‖, ω) only in the range ω < µ + E0(k‖).
Similarly, for k‖ > kF it follows from the expression (20) that due to the presence of the
occupation function n(k‖ + q‖) the non-vanishing contributions from the dense discrete poles
ω = µ − �(q) + E0(k‖) + iη of the reciprocal value of the Green’s function are possible
only for ω < µ − �(k‖ − kF, Q⊥) + E0(k‖), i.e. they originate from high-frequency collective
excitations. A strict vanishing of Im G−1 for k‖ > kF in the low-frequency range is in fact the
consequence of the exclusion of incoherent excitations from the dielectric function (14). This
approximation however does not influence the main conclusions on the properties of G(k‖, ω)

presented below.
A further noticeable feature in figure 2 is a finite plateau in Im G−1(k‖, ω) at −e2kF

within the energy range µ − ωpl + E0(k‖) < ω < µ − �(π/b, Q⊥) + E0(k‖). It originates
from the limitation of the summation in the expression (20) to the range of the first Brillouin
zone, −π

b � q‖ � π
b . Namely, the integration in terms of q⊥ from 0 to Q⊥ in that

expression covers poles of G−1(k‖, ω) in the energy range between µ − ωpl + E0(k‖) + iη and
µ−�(q‖, Q⊥)+E0(k‖)+iη, while the subsequent integration in terms of q‖ involves only those
poles that fulfil the condition ω < µ − �(q‖, Q⊥) + E0(k‖) for a given value of ω in the range
µ−ωpl + E0(k‖) < ω < µ+ E0(k‖). The ensuing value for ω, ω = µ−�(qc, Q⊥)+ E0(k‖),
and the requirement that qc stays in the first Brillouin zone, determine the boundaries ±qc

of the q‖-integration as given by the expression (29). As is seen from this expression,
|ω−µ−E0(k‖)|Q⊥√
ω2

pl−(ω−µ−E0(k‖))2
> π

b for µ −ωpl + E0(k‖) < ω < µ −�(π/b, Q⊥) + E0(k‖), i.e. we have

the same boundary qc = π
b of q‖-integration for all of these values of ω. The consequence is

the plateau in Im G−1(k‖, ω).
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Figure 3. Frequency dependence of Re G−1(k‖, ω)/ωpl (full lines) and − Im G−1(k‖, ω)/ωpl

(dashed lines) for kF = π/2b and k‖ = 0 (a), k‖ = kF (b), and k‖ = 2kF (c).

The ω-dependence of Re G−1(k‖, ω) and Im G−1(k‖, ω) is illustrated in figure 3 for three
representative values of k‖ (k‖ = 0, kF, 2kF). Re G−1(k‖, ω) increases from −∞ as ω increases
from −∞, and diverges to +∞ for ω = µ−ωpl+E0(k‖)−0. At this value of ω, Im G−1(k‖, ω)

has a step singularity, as was already shown in figure 2. The singularity at ω = µ−ωpl+E0(k‖)
shifts towards larger values of ω as k‖ increases, as is seen in both figures 2 and 3. Furthermore,
as k‖ increases, the zero of Re G−1(k‖, ω) for ω < µ + E0(k‖) − ωpl shifts to the right and
is closer and closer to the singularity at ω = µ − ωpl + E0(k‖). As ω further increases from
ω = µ−ωpl+E0(k‖)+0, Re G−1(k‖, ω) decreases from +∞, passes through a local minimum,
and finally tends towards 0 for ω → µ + E0(k‖), in accordance with the expression (23).

It is important to note that Re G−1(k‖, ω) has zero in the frequency range ω < µ+E0(k‖)−
ωpl in which Im G−1(k‖, ω) also vanishes. Thus we come to the conclusion that only in the
range ω < µ + E0(k‖) − ωpl does the Green’s function G(k‖, ω) have a first-order pole of the
form ω0(k‖) = E(k‖) − i�(k‖), where �(k‖) is infinitesimally small in the present idealized
approach, and presumably remains reasonably small (such that |�(k‖)| 
 |E(k‖)|) after taking
into account usual additional scattering leading to finite relaxations of electronic states. As a
consequence, only in this range can the Green’s function be expressed in the standard resonant
form

G(k‖, ω) = Z(k‖)
ω − ω0(k‖)

, (34)

where Z(k‖) = |∂ Re G−1(k‖, ω0(k‖))/∂ω|−1 is the residuum of the Green’s function at the
pole ω0(k‖). In other words, quasi-particle excitations exist only for frequencies in the range
ω < µ + E0(k‖) − ωpl.
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Figure 4. Spectral function A(k‖, ω) for ωpl/t0 equal to 4 (a) and 3 (b) in the case kF = π/2b.
Broad maxima for different values of the wavenumber k‖ follow from equation (36), while δ-peaks
are represented by their weight Z(k‖) according to equation (37).

The above result is qualitatively different from that obtained for the three-dimensional
isotropic ‘jellium’ within the same G0W0 approach [21–23]. In the latter case the imaginary
part of the reciprocal Green’s function vanishes in the frequency range µ−�pl < ω < µ+�pl,
where �pl is the long-wavelength plasmon frequency. Simultaneously Re G−1(kF, ω) increases
from −∞ for ω → µ − �pl + 0 towards ∞ for ω → µ + �pl − 0, passing through the zero at
µ = ω0(kF). Thus the quasi-particle is well defined.

3. Spectral function

The single-particle spectral function

A(k‖, ω) = 1

π
| Im G(k‖, ω)| (35)

can be always written in terms of Re G−1(k‖, ω) and Im G−1(k‖, ω), namely

A(k‖, ω) = 1

π

| Im G−1(k‖, ω)|
[Re G−1(k‖, ω)]2 + [Im G−1(k‖, ω)]2

, (36)

except when Re G−1(k‖, ω) has a zero ω0(k‖) in the frequency range in which Im G−1(k‖, ω) =
0. In the latter case the spectral function is represented by the δ-peak,

A(k‖, ω) = Z(k‖)δ[ω − ω0(k‖)]. (37)

After inserting the results for the real and imaginary parts of reciprocal Green’s function
G−1(k‖, ω) given by equations (23)–(30) into (36), (37), we obtain the spectral function as
shown in figure 4 for two values of the ratio of plasmon frequency and transfer integral,
ωpl/t0 = 3 and 4. First, the comparison of figures 2 and 4 shows that, apart form the series
of high-frequency delta functions, the regions of the non-zero values in A(k‖, ω) coincide with
the corresponding regions of the non-vanishing imaginary part of G−1(k‖, ω). Furthermore,
A(k‖, ω) has a broad feature at the energy scale of the plasmon energy in the range between
ω = µ + E0(k‖) and ω = µ + E0(k‖) − ωpl which diverges at ω = µ + E0(k‖) for k‖ � kF.
Note that this range varies slowly with the wavenumber k‖. Finally, the spectral weight contains
the k‖-dependent quasi-particle δ-peak in the energy range ω < µ + E0(k‖) − ωpl.

We point out that the spectral function presented above obeys excellently the sum rule∫ ∞

−∞
A(k‖, ω) dω = 1, (38)
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the numerical agreement being better than 10−2 in the whole range of the wavevector k‖, and
for all investigated values of the ratio ωpl/t0.

The behaviour of the spectral function in figure 4 is to be contrasted to that of three-
dimensional isotropic normal metals. In the latter case the reciprocal Green’s function is
analytical at the Fermi wavenumber kF and in the vicinity of ω = µ, so the Landau theory
of Fermi liquids can be applied. As is explicitly shown within the G0W0 approximation for the
‘jellium’ model [21–23], the spectral function then has a quasi-particle δ-peak at µ for k‖ = kF.
In the actual case of a quasi-one-dimensional metal the Landau theory of Fermi liquids cannot
be applied due to the existence of the low-energy collective modes which introduce singularities
of the reciprocal Green’s function in the vicinity of ω = µ and for k‖ = kF. These singularities
are the direct consequence of the anisotropy of the plasmon dispersion (16), i.e. of its acoustic
nature with ωmin = 0, which leads to the formation of the broad feature in the spectral function.
The form of A(k‖, ω) shown in figure 4 is qualitatively in agreement with ARPES experiments
on some quasi-one-dimensional conductors [5–7] which also show broad structures and the
absence of low-energy quasi-particle peaks in the spectral functions.

Let us now look more closely into the spectral function (36) for k‖ = kF and in the limit
ω → µ−. Since for ω ≈ µ

Re G−1(kF, ω) ≈ ω − µ − e2

2π

[
Q⊥(ω − µ)

ωpl
ln

(
(ω − µ)2

2ω2
pl

)
+ b

π
Q2

⊥
ω − µ

ωpl

]
, (39)

Im G−1(kF, ω) = −e2

2

|ω − µ|Q⊥√
ω2

pl − (ω − µ)2
, (40)

the spectral function then reads

A(kF, ω) ≈ e2

2π

Q⊥
|ω − µ|ωpl

[
1 − e2

2π

Q⊥
ωpl

(
ln
(

(ω−µ)2

2ω2
pl

)+ b
π

Q⊥
)] (41)

and diverges for ω → µ. The absence of quasi-particle δ-functions in the spectral function is
the consequence of the fact that the ω-dependence of Im G−1(kF, ω) differs from the quadratic
law which is the essential property of Fermi liquids. Also, our expression (41), obtained within
the G0W0 approximation, differs from the corresponding expression for the spectral function in
the one-dimensional spinfull spin-rotation-invariant Luttinger model obtained within an exact
bosonization treatment [4],

A(kF, ω) ∼ |ω − µ|α−1, (42)

where α = (Kρ + K −1
ρ −2)/4 is the anomalous dimension, with the ‘charge stiffness constant’

given by Kρ =
√

πvF+g4ρ −g2ρ

πvF+g4ρ +g2ρ
, where g2ρ and g4ρ are coupling constants for the forward

Coulomb scattering in the charge sector.
Let us recall here that in the Luttinger model the eigenstates of the system are long-

range charge and spin acoustic collective modes, obtained as combinations of the low-energy
electron–hole excitations, while low-energy quasi-particles are not present. The result (42) for
α exceeding unity would be in agreement with the results of the photoemission experiments on
quasi-one-dimensional metals [5–7] in the low-energy range, provided that the latter are indeed
microscopically relevant. This would be an indication that these materials belong to the regime
of the strong long-range interaction within the Luttinger model, as was also concluded in the
theoretical analyses in [12, 32, 33].

Let us also mention for the sake of completeness that ARPES spectra of the quasi-two-
dimensional crystals in the normal conducting phase show the quasi-particle at the chemical
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Figure 5. Density of
states n(ω) for ωpl/t0
equal to 3 (a) and 4 (b),
and for kF = π/2b.

potential superimposed to the broad hump at higher energies [34]. A spectral function with such
properties was obtained by Artemenko et al [35] who studied the RPA screening of Coulomb
interaction in the model of a quasi-two-dimensional metal with the metallic planes connected
by the finite perpendicular overlap integral t⊥. In this model the collective mode has a spectrum
with a finite minimum ωmin = 0 due to the finiteness of the overlap integral t⊥.

4. Density of states and momentum distribution

Let us first consider the density of states

N(ω) =
∑

k

A(k‖, ω) (43)

where the k summation goes over the same first Brillouin zone as before. After changing
to cylindrical coordinates and integrating in terms of k⊥, the density of states per number of
electrons in the system reads

n(ω) ≡ N(ω)/Ne = 1

2kF

∫ π
b

0
A(k‖, ω) dk‖, (44)

where Ne ≡ 2(2kF
4π2

ac )/(8π3/V ). After integrating the spectral density A(k‖, ω) numerically,
we arrive at the result for n(ω) shown in figure 5 for the values of the ratio ωpl/t0 equal to 3
and 4 as in figure 4. The density of states falls from the maximum value in the range of
negative energies to the local minimum, and then rises to the discontinuity which can be of two
types. First, if the highest energy of the k‖-dependent quasi-particle δ-peak in the energy range
ω < µ + E0(k‖) − ωpl is less than µ + E0(k‖), there is a step discontinuity at this energy,
as is shown in the figure 5(b) for ωpl/t0 = 4. As ω further increases the density of states
increases and diverges to +∞ at µ + E0(k‖), and then continuously falls to zero at ω = µ.
Second, if the highest energy of the k‖-dependent quasi-particle δ-peak in the energy range
ω < µ+E0(k‖)−ωpl is greater than µ+E0(k‖), the density of states diverges at µ+E0(k‖). As
ω further increases it falls to the local minimum and rises to a step discontinuity at the highest
energy of the k‖-dependent quasi-particle δ-peak in the energy range ω < µ + E0(k‖) − ωpl,
as is shown in figure 5(a) for the case ωpl/t0 = 3. Finally, as ω further increases, the density of
states falls to zero at ω = µ.

It is instructive to compare the above G0W0 result for the density of states with the density
of states for the non-interacting electron band having the tight-binding dispersion (4),

n0(ω) = 1

2kF

∫ π
b

0
δ(ω − E0(k‖)) dk‖ = 1

4kFt0b| sin k‖0| , (45)
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Figure 6. Density of states of the tight-binding band and the ‘exchange’ density of states obtained
by taking into account only the exchange contribution (26) to the spectral function (44) measured
from the corresponding chemical potentials, for kF = π/2b and t0 = 0.25 eV (a) and 1.5 eV (b).

where k‖0 is the zero of the equation ω − E0(k‖0) = 0. As shown in figure 6, this free-particle
density of states diverges at the edges of the electron band (4), and has a minimum equal to
1/(4kFt0b) in the middle of the band (ω = 0). In the same figure we show for comparison
the density of states obtained after taking into account only the exchange energy (26) in the
Green’s function (17). The exchange contribution itself shifts the chemical potential to the
negative value Eex(kF). The density of states measured from this chemical potential is shifted
to negative energies that exceed the bandwidth. The rest of the G0W0 self-energy shifts the
density of states even more to negative energies with respect to the G0W0 chemical potential µ,
giving noticeable gain at energies of the order of the plasmon energy, as is shown in figure 5.

Such behaviour differs from the corresponding behaviour of the density of states in the
Luttinger model which has potential behaviour at low energies [4]

N(ω) ∼ |ω − µ|α, (46)

where α is the interaction-dependent anomalous dimension from equation (42), and contains
a maximum at a finite energy. This maximum guarantees the fulfilment of the sum rule, but
its position cannot be directly scaled with the band width or the plasmon energy due to the
irrelevance of the energetic cut-off choice in the bosonization procedure applied to the Luttinger
model. In contrast to that, the present G0W0 calculation shows that the broad feature with the
divergence at µ + E0(k‖) in the density of states takes place at energies of the order of the
plasmon energy.

We are now in position to calculate the momentum distribution function

n(k‖) =
∫ µ

−∞
A(k‖, ω) dω, (47)

and to check the self-consistency of the G0W0 approximation. The results of the numerical
calculation are shown in figure 7, again for the same values of the ratio ωpl/t0 as in previous
figures. We find that the areas below curves (a) and (b) differ from the exact number of electrons
by less than 4% and 9% respectively. This result proves that the G0W0 approximation is
satisfactorily self-consistent.

The form of the momentum distribution function from figure 7 indicates that there are no
low-energy quasi-particles in the dressed electron spectrum. Furthermore, the curves for n(k‖)
have divergent derivations at k‖ = kF, which is also a property of Luttinger liquids [36]. On
the other hand, the G0W0 approximation in the case of a three-dimensional isotropic ‘jellium’
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Figure 7. Momentum distribution function for kF =
π/2b and ωpl/t0 equal to 4 (a) and 3 (b).

shows a typical Fermi liquid behaviour, i.e. n(k‖) has a finite discontinuity at k‖ = kF equal to
the spectral weight of the quasi-particle at kF [21, 22].

Our preliminary considerations of the extension of the present treatment to the range of
finite transverse bandwidths show that the finite transverse bandwidth is responsible for the
appearance of an optical gap in the plasmon mode [19, 20]. Plasmon dispersion of such a kind
in turn introduces into the spectral function the quasi-particle δ-peak at the chemical potential,
in agreement with the results of [33] obtained in a different approach. In this way one can
follow continuously how the electron spectral properties vary as one passes from the highly
anisotropic (quasi-one-dimensional) limit to the fully isotropic one. Experimentally, ‘weak’
quasi-particles in the regime of small transverse bandwidths are still not detected.

5. Conclusion

Although, as discussed in the previous section, our G0W0 expression for the spectral function
does not reproduce the exact result obtained before for Luttinger liquids in the asymptotic
low-frequency regime, we expect that it gives a qualitatively good description of the spectral
properties of quasi-one-dimensional conductors at the energy scale of the plasmon energy. Our
analysis shows that the strongly anisotropic low-frequency plasmon modes induced by the long-
range Coulomb interaction in the conducting electron band with a (quasi)-one-dimensional
dispersion give a dominant contribution to the electron self-energy, and are responsible for the
electronic spectral properties in the normal phase.

More precisely, the acoustic plasmon anisotropy causes the formation of the broad feature
at the energy scale of the plasmon frequency. Simultaneously the quasi-particle δ-peaks and
the corresponding spectral weight shift to higher energies. The broad feature loses its spectral
weight relatively with respect to the contributions from the quasi-particle δ-peaks as the ratio
of the plasmon energy to the hopping integral in the chain direction increases. Furthermore, the
broad feature depends weakly on the wavevector k‖, this dependence being weaker and weaker
with respect to the dispersion of the quasi-particle δ-peaks as the ratio of the plasmon energy
to the hopping integral in the chain direction increases. Such behaviour of the spectral function
is in qualitative agreement with the ARPES spectra obtained for some Bechgaard salts.

The disappearance of low-energy quasi-particle excitations in the spectral function is the
central result of the present calculation, which shows that already at the G0W0 stage the
spectral properties of the quasi-one-dimensional band differ qualitatively from those for three-
dimensional isotropic normal metals showing standard Fermi liquid properties. Comparing
these two results, we come to the conclusion that due to the existence of the low-energy
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collective modes of quasi-one-dimensional metals, the standard starting point of the Fermi
liquid approach, namely the expansion of the Green’s function around the Fermi energy, is
not allowed. On the other hand, the present G0W0 approach enables the determination of
the position of the broad feature in the spectral function, in contrast to the Luttinger liquid
approach, which is limited to the exact determination of the power law behaviour in the low-
frequency region. The two methods can be thus considered as complementary in the analysis of
the role of collective modes in the spectral properties of the quasi-one-dimensional conductors,
giving an overall complete insight in the wide energy range relevant for ARPES measurements.
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